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Typical monolithic 
silica aerogels 

What are aerogels? 

• Highly porous solids made by drying a wet gel 
without shrinking 

• Pore sizes extremely small (typically 10-40 
nm)—makes for very good insulation  

• 2-4 times better insulator than fiberglass under 
ambient pressure, 10-15 times better in light 
vacuum 

• Invented in 1930’s by Prof. Samuel Kistler of 
the College of the Pacific 

Sol     Gel           Aerogel 
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Examples of current commercial aerogel 
products • Cabot  

– Pellets, composite 
– Oil and gas pipeline insulation 
– Cryo-insulation 
– Day-lighting applications 

• Aspen Aerogels 
– Flexible blanket insulation 
– Oil and gas pipeline 
– Construction materials 
– Aerospace, apparel 

• Nanopore 
– Vacuum insulation panels 
– Shipping containers 
– Refrigeration 
– Apparel 
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Comparison of Aspen Aerogels blanket 
insulation with traditional insulation 

Example markets 
Industrial ($5 billion) 

Lower installed costs through 
reductions in downtime, labor and 
logistics costs 
Lower lifecycle costs through reduced  
on-going maintenance costs 

Building and Construction ($23 billion) 
Superior thermal performance and 
strong fire protection with 
advantageous form factor 
Enables cost-effective compliance 
with stringent building regulations, 
particularly in Europe 
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World Insulation Demand (by Region) 

Calsil, Perlite  
Cellular Glass,  
PIR $1.3Bn 

Aerogels Today Only <0.25% Market, 
but Potential Applications throughout the 

Global Insulation Market 

Aerogel  
$0.05Bn 

Mineral Wool  
$5.2Bn 

Fiberglass 
$8.5Bn 

Foamed Plastics 
(Polyurethane, Polystyrene) 

$17.1Bn 

…but 
improvements 
to technology 

can help 
penetrate 

larger  markets 

($ mm) 

 Source: Freedonia Group 2011 World Insulation Report 
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 but are extremely 
fragile and 
moisture 
sensitive 

Cosmic dust collector –
Stardust Program Insulation on rovers 

Monolithic silica aerogels out-perform particulate 
forms as insulation 

 and limited to a few 
exotic applications 

Doug Smith, Aerogel Conference, 2007 



National Aeronautics and Space Administration 

www.nasa.gov 7 

Potential applications for durable aerogels in 
aeronautics and space exploration 

Cryotank Insulation 

Insulation for EVA suits 
and habitats 

Air revitalization 

Ultra-lightweight, multifunctional 
structures for habitats, rovers 

Heat shielding 

Sandwich 
structures 

Fan engine containment 
(Ballistic protection) 

Propellant tanks Inflatable aerodynamic  
decelerators 

http://www.frassanito.com/exploration/hirez/MrsOptMicroscope.1k.jpg
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Durable aerogels by reinforcing with polymers 

  

Native Cross-linked 

• Polymer reinforcement 
doubles the density  

• Results in two order of 
magnitude increase in 
strength 

• Reduces surface area by 
only 30-50%  

 

Leventis, Meador, Johnston, Fabrizio, and Ilhan, US Patent No. 
7,732,496;; June 8, 2010 
Jason P. Randall, Mary Ann B. Meador, and Sadhan C. Jana,  
ACS Appl. Mater. Interfaces, 2011, 3 (3), pp 613–626 
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Typical Aerogel Cross-linking Process 

Crosslinked 
Aerogel 

SOL GEL  

Wash 
(water, 

alcohols) 

Silanes 
 in solvent 

H2O/solvent
/catalyst 

15 min 

Soak in 
monomer 

bath  

heat 

Cross-linked 

SCF drying 
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Wash  
(excess 
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Process/property optimization of di-isocyanate 
cross-linked aerogels  

Empirical models…  

…used for predictions of optima  

Low density... 

…to high density… 
and everything  

in-between 

Meador et al, Chemistry of Materials, 2007, 19, 2247-2260 
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One pot process streamlines aerogel 
fabrication 

11 

Sol with epoxy Gel with epoxy Epoxy reinforced 
gel

Four 
Washes

Epoxy reinforced
aerogel

SCE

SolGel

Monomer 
diffusion

Two 
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M
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O
ne

 P
ot • Eliminating diffusion  

– Shortens process 
– Cross-linking more 

efficient 
– Aerogels are more uniform 

• Properties are the same  
as multistep when 15 
mol % APTES used 

• Higher APTES leads to 
much higher density, 
lower surface area  

– Diffusion not a factor 
– Amount of polymer cross-

linking much higher 

    

Meador et al, ACS Applied Materials and Interfaces, 2010, 2, 2162-2168  
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Hypersonic inflatable aerodynamic 
decelerator concept 

• Hard aeroshells used to land rovers on Mars limit size of payload 
• Inflatable structure overcomes this limitation 
• Concept shown constructed from a series of stacked inflatable torus 

tied to each other and to the vehicle with a network of straps 
• Flexible thermal protection system on fore body only 
• More information about recent successful test launch: 

http://www.nasa.gov/centers/goddard/news/features/2012/IRVE3.html  

12 
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Improved insulation for inflatable  
re-entry vehicles 

• Baseline insulation is Aspen 
Aerogels Pyrogel 3350 
– Aerogel particles flakes off as sample is 

handled 
– Organic components outgas at  

~375-800 oC  

• Needs to be as or more flexible and 
foldable, less dusty, as or more 
thermally stable 

13 

 



National Aeronautics and Space Administration 

www.nasa.gov 

Approaches examined for more flexible 
aerogel insulation 

• Thin films 
– Thinner is more flexible than thick  
– Think aluminum foil vs. block of aluminum 

• Nanoscale fillers to improve properties 
– Electrospun nanofibers 
– Carbon nanotubes 

• Polymer aerogels 
– Silica aerogels and even polymer reinforced silica aerogels 

are intrinsically stiff 
– Need to examine high temperature stable polyimides 

14 
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Collaboration with University of Akron—thin film 
aerogels reinforced with electrospun nanofiber 

• Sol cast into thin film 
• Electrospun fibers of PDMS/PU 

deposited into film 
• Flexible nanofibers bridge 

cracks/hold structure together 

15 

Solution A 
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Sol with 
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mix 
 Film  
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Li et al, ACS Applied Materials and Interfaces, 2009, 1, 2491–2501 
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Linear polyimide (PI) aerogels made by 
Aspen Aerogels 

• High MW polyimide gels made 
from PMDA and ODA 

• Supercritical drying produced 
aerogels 

• Onset of decomposition >560 oC 
• As strong or stronger than 

polymer reinforced silica aerogel 
• But much shrinkage on 

preparation 

16 
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Rhine, Wang and Begag, US Patent 7,074,880 B2, July 11, 2006 
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Cross-linked PI aerogels using branched amines 
• Use of triamines, or other 

multifunctional groups to form 
network structure 

• Gelled polyamic acid network is 
imidized 

• Solvent exchange to acetone 
then supercritical drying to 
produce aerogel  

17 
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Meador, US Patent application filed 9-30-2009 
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Two approaches to cross-linked PI aerogels developed 

• Network structure formed 
either through cross-linking 
with aromatic triamine (TAB) 
or POSS decorated with eight 
aminophenyl groups 

• Scheme with TAB cross-
linking shown 
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Polyimide 3D network using T8-POSS—first 
successful formulations 

19 
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Guo, et al, ACS Appl. Mater. Interfaces, 2011, 3 (2),546-552  

• PI cross-linked with POSS 
• Chemically imidized with 

pyridine/acetic anhydride 
• BPDA-(BAX-BPDA)n; n = 10 to 25 
• Low shrinkage (~10 %)  
• Density: ~0.1 g/cm3 
• Porosity > 90 % 

BAX 
BPDA BPDA 
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Cross-linked polyimide aerogels cast as 
thin film are flexible 

• Collaboration with Miko Cakmak, University of Akron 
• Density of film is similar to molded cylinder  
• Middle picture is 9” x 13” pan; film is folded multiple times 

 

20 

As-cast wet films Dry aerogel 
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Aging up to 500 oC in N2 for 24 hours 

BPDA/BAX 
Before 
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• Very little weight loss, little change in pore structure 
up to 400 oC 

• 500 oC causes collapse of pore structure 
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Testing of PI-POSS aerogels under high heat flux 

Laser Hardened Materials Experimental Lab 
Wright Pat 

22 

• BPDA/BAX/POSS 
• Heat flux 20 

W/cm2, 8 torr N2 

• 90 sec duration 
• Bottom layers only 

darkened, no hole, 
no cracks 
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Formulation study of PI-POSS aerogels with 
different dianhydrides and diamines 

23 
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Mixtures of rigid and flexible diamines give 
better combination of properties 

• 100% DMBZ too stiff 
• 100% ODA moisture 

sensitive 
• 50-50 formulation is 

flexible, strong, moisture 
resistant 

24 
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PI-POSS aerogels—thermal conductivity 
• n = 20 formulation measured 

at TPRL 
• Multiple layers 0.6 mm thick 

measured 
• Comparable to baseline 

insulation for inflatable 
decelerator (Pyrogel 3350) in 
both thermal conductivity and 
density 

• About 5-6 layers equals one 
layer of Pyrogel 3350 

• TC measurements of other 
formulations are in progress 

• Based on density, expectation 
is that DMBZ formulations will 
be similar to BAX 

25 
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• Varying structure (connecting 
groups) of diamine and 
dianhydrides provide means to 
tailor properties 
– Flexibility 
– Thermal oxidative stability 
– Mechanical properties 
– Thermal conductivity 

26 

PI aerogels cross-linked with  
1,3,5-tris(aminophenoxy)benzene,TAB 
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Meador, et al, ACS Appl. Mater. Interfaces, 2012, 4 (3),536-544  
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Thin films cast from TAB cross-linked PI aerogels 

• TAB/BPDA with either DMBZ or ODA, n = 30 
• Higher tensile modulus than POSS films with same 

backbone chemistry 

27 
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TAB polyimide aerogels strong enough to support 
weight of a car 
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PI aerogels are stronger than polymer reinforced silica 
aerogels; compare favorably with typical structural 

foams at the same density 

29 
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• Two cross-linking approaches 
evaluated and over twenty different 
combinations of backbone chemistry 

• Formulations identified with 
– Best moisture resistance 
– Best mechanical properties at lowest 

density 
– Low thermal conductivity 
– Good thermal stability 

• Applicable to many terrestrial uses 
including insulation where silica 
aerogel blankets are currently used 

– No dusting! 

• Future—examining aerogels made 
from other polymers to improve 
properties further 

Summary: Polyimide Aerogels 
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